

XLII Congresso Brasileiro de Engenharia Agrícola - CONBEA 2013

Centro de Convenções "Arquiteto Rubens Gil de Camillo" - Campo Grande -MS 27 a 31 de julho de 2014

MAXIMIZAÇÃO DA RECEITA LÍQUIDA COM RESTRIÇÕES NA PRODUÇÃO POR ÁREA IRRIGADA E RECURSOS HÍDRICOS

ANGEL RAMON SANCHEZ DELGADO1 & SÉRGIO DRUMMOND VENTURA2

¹ Professor Associado IV, Universidade Federal Rural do Rio de Janeiro, ICE. Departamento de Matemática, BR 465, Km. 7, Seropédica, RJ, <u>asanchez@ufrrj.br</u>

Apresentado no XLIII Congresso Brasileiro de Engenharia Agrícola - CONBEA 2014 27 a 31 de julho de 2014, Campo Grande- MS, Brasil.

RESUMO: Objetivou-se conhecer a variação econômica das receitas liquidas quando a produção agrícola por área irrigada (ou produção de alimentos) é maior ou igual que um aumento de 25%, 50% e 75% da produção máxima com limitações hídricas. Tais informações são fundamentais nas tomadas de decisões do produtor agrícola. O problema é modelado matematicamente como um programa não linear com restrições e resolvido através da resolução de uma seqüência de programas não lineares irrestritos. Depois da caracterização e implantação computacional do modelo, foram desenvolvidos experimentos numéricos usando dados conhecidos na literatura para as culturas: banana, cebola, tomate, melancia, melão e milho. Desses ensaios observou-se que a melhor situação econômica para todas as culturas é quando a produção agrícola por área irrigada supera 25% a mais da produção máxima com limitações hídricas. Pode-se concluir que o procedimento computacional desenvolvido apresenta um bom comportamento numérico para os cenários selecionados.

PALAVRAS-CHAVE: barreira logarítmica, programação não linear, função resposta, produção de alimentos

MAXIMIZATION OF NET REVENUE WITH CONSTRAINTS IN PRODUCTION FOR IRRIGATED AREA AND WATER RESOURCES

ABSTRACT: This study aimed to know the economic variation of net revenues when agricultural production per irrigated area (or food production) is greater than or equal to an increase of 25%, 50% and 75% of the maximum production with limited water resources. Such information is critical in making decisions for the agricultural producer. The problem is mathematically modeled as a nonlinear program with constraints and it is solved by solving a sequence of unconstrained nonlinear programs. After characterization and computational implementation of the model, numerical experiments were carried out using known data in the literature for crops: banana, onion, tomato, watermelon, melon and corn. Based on these tests, it was observed that the best economic situation for all cultures is when agricultural production per irrigated area exceeds over 25% of the maximum production with limited water resources. It can be concluded that the computational procedure developed has a good numerical performance for the selected scenarios.

KEYWORDS: logarithmic barrier, nonlinear programming, response function, food production

INTRODUÇÃO: Na atualidade, a nível econômico, se faz importante conhecer as variações das receitas líquidas com limitações hídricas, quando são realizados acréscimos na demanda da produção por área irrigada (produção de alimentos). No presente e futuro imediato, esses dados são fundamentais para as tomadas de decisões dos pequenos e médios produtores. Considerando que o comportamento de uma cultura depende da quantidade e freqüência de irrigação que sejam administrados, a função resposta ou de produção (em relação à lâmina de água), representa uma ferramenta básica na modelagem matemática da produção agrícola.

Existem diversas publicações que tratam com modelos em que se procura maximizar a

² Professor Adjunto III, Universidade Federal Rural do Rio de Janeiro, ICE. Departamento de Matemática, BR 465, Km. 7, Seropédica, RJ, <u>ventura@ufrrj.br</u>

produtividade, ou a receita líquida, ou a rentabilidade de uma cultura; sujeito a restrições referentes a insumos; capital, espaço, etc. (FRIZZONE et al., 2005).

Neste trabalho; usando programação não linear, modelou-se a maximização da receita líquida com limitações hídricas, e onde a produção por área irrigada de cada cultura considerada (produtividade vezes o quociente entre o volume total de água disponível e a lâmina de água) é maior ou igual que certa demanda prefixada. A solução numérica do problema é alcançada através de um procedimento computacional baseado no método barreira logarítmica (CARVALHO et al. 2009).

MATERIAL E MÉTODOS: Denotemos com y(w) a função resposta ou de produção de uma determinada cultura por volume de água aplicado (w); em geral, uma função não-linear $(kg.ha^{-1})$. Consideramos como receita líquida $(R\$ ha^{-1})$ a relação dada por: $RL(w) = p_c y(w) - c_w w - c_0$, em que p_c representa o preço da cultura $(R\$ kg^{-1})$, c_w o custo da lâmina de água $(R\$ (mm ha)^{-1})$ e c_0 o custo fixo de produção $(R\$ ha^{-1})$. Neste trabalho interessa maximizar RL(w) sujeito a que a produção por área irrigada, seja maior ou igual que certa demanda prefixada (d), com limitações hídricas. Matematicamente, procura-se a lâmina de água ótima (w) do seguinte problema de programação não-linear com restrições (PPNL):

$$Maximizar \qquad RL(w) = p_{\sigma}y(w) - c_{w}w - c_{0} \tag{1}$$

Sujeito a:
$$y_a(w) = \frac{w_T y(w)}{w} \ge d$$
 (2)

$$w_l \le w \le w_u \tag{3}$$

Em que: w_l , w_u — representam limite inferior e superior da lâmina de água respectivamente e w_T — a água total disponível para irrigar (mm). Utilizando a barreira logarítmica, o procedimento computacional implantado para resolver (1)-(2)-(3), funciona como um método de duas fases. Na primeira fase determinamos $w_{max} = Argmax \{y(w): w_l \le w \le w_u\}$ e y_{max} ; isto é, o valor da produção na lâmina máxima de água, assim como valor da receita líquida $RL(w_{max})$. Na segunda fase, considerando que a resolução do problema (1)-(2)-(3) depende dos parâmetros externos w_T (água total disponível) e d (demanda prefixada de produção por área irrigada); e que ao final da primeira fase, se conhece o par (w_{max}, y_{max}) ; a decisão é partir para um experimento numérico que considera aumentos escalonados (25%, 50% e 75%) de w_{max} e y_{max} , no cálculo dos valores de w_T e d em (2).

Foram selecionados os dados apresentados em FRIZZONE et al. (2005); para as culturas da: banana, cebola, tomate e melancia; em MONTEIRO et al. (2007), para a cultura do melão e em HEINEMANN et al. (2001), para a cultura do milho, segundo as informações apresentadas na Tabela 1.

As unidades monetárias apresentadas variam conforme o autor; a utilizada por FRIZZONE et al. (2005) é o dólar (US\$), no entanto a utilizada por MONTEIRO et al. (2007) e HEINEMANN et al. (2001) é o real (R\$). Os custos dependentes da água (c_w) também variam com autor; para FRIZZONE et al. (2005), foi de 0,2816 US\$. mm^{-1} ; para MONTEIRO et al. (2007) de 0,134 R\$. mm^{-1} e para HEINEMANN et al. (2001) de 0,15 R\$. mm^{-1} . Os intervalos de irrigação [w_l, w_u] considerados foram: [1000; 5000] para a banana, [400; 1200] para a cebola, [100; 1000] para o tomate, [0; 1600] para a melancia, [200; 1200] para o melão e [109; 753] para o milho.

Tabela 1. Funções respostas das culturas em relação à lâmina de água aplicada (w), preços de cada cultura (P_a) e custos fixos de produção referente a cada cultura (P_a).

Culturas	Equações	$P_c \ (\$. kg^{-1})$	c_0 (\$. ha^{-1})
Banana	$y = -0.01097w^2 + 63.25504w - 36848$	0,18	1.200,00
Cebola	$y = -0.2299w^2 + 378.924w - 115910$	0,20	1.530,00
Tomate	$y = -0.23948w^2 + 271.9355w - 23000$	0,08	1.645,00
Melancia	$y = -0.0457w^2 + 81.09w - 2301.15$	0,08	750,00
Melão	$y = -0.0379w^2 + 54.132w + 5420.3$	0,40	6.285,00
Milho	$y = -0.1438w^2 + 112.10w - 10472.43$	0, 171	832,77

RESULTADOS E DISCUSSÃO: O procedimento computacional para resolver (1)-(2)-(3) foi implantado em um Intel Core 2 duo, 4GB de memória RAM, com sistema operacional Ubuntu 12.4 e MATLAB 7.12.0633 R2a11a. Os resultados da primeira fase do procedimento se encontram na Tabela 2.

Tabela 2: Lâmina de água máxima, w_{max} (mm), produtividade máxima de cada cultura; y_{max} (kg, ha⁻¹), receita líquida na lâmina máxima RL_{max} (\$ ha^{-1}).

Culturas	w_{max}	$y_{max} := y(w_{max})$	RL_{max}
	(mm)	$(kg.\ ha^{-1})$	$(\$.ha^{-1})$
Banana	2.883,0	54.337	7.768,8
Cebola	824,1	40.227	6.283,3
Tomate	567,8	54.197	2.530,9
Melancia	887,2	33.670	1.693,8
Melão	714,1	24.749	3.507,6
Milho	389,8	11.375	1.002,5

Já na segunda fase, se faz $w_T = w_{max}$ para cada cultura e analisados três cenários: $d = 25\% \uparrow y_{max}$; isto é, escolhemos d, 25% acima do valor de y_{max} := $y(w_{max})$. Seguidamente, $d = 50\% \uparrow y_{max}$ e logo, $d = 75\% \uparrow y_{max}$. Analogamente quando se considera $w_T = 25\% \uparrow w_{max}$, $w_T = 50\% \uparrow w_{max}$, $w_T = 75\% \uparrow w_{max}$. Em todas as tabelas a seguir é possível observar que salvo a cultura do tomate no primeiro cenário, as lâminas e receitas líquidas ótimas, independem dos cenários escolhidos; isto é, para $w_T = w_{max}$, aumentos da produção por área irrigada em 25%, 50% e 75% do valor de y_{max} , leva à mesma lâmina e receita líquida ótima. Também, nas combinações $w_T = 25\% \uparrow w_{max}$ e $d = 25\% \uparrow y_{max}$, $w_T = 50\% \uparrow w_{max}$ e $d = 50\% \uparrow y_{max}$, $w_T = 75\% \uparrow w_{max}$ e $d = 75\% \uparrow y_{max}$; as lâminas e receitas líquidas ótimas são as mesmas.

Em relação à banana, a Tabela 3 mostra que quando d=25% \uparrow y_{max} e são realizados incrementos de 25%, 50% e 75% no volume total de água disponível, se obténs decrescimentos na lâmina e receita líquida ótima. Note que quando d=50% \uparrow y_{max} , uma lâmina ótima de 1584.04 mm permite gerar uma receita líquida ótima (US\$4802.41) que é quase duas vezes a receita gerada quando d=25% \uparrow y_{max} (US\$2423,53). Uma situação

similar é observada quando $w_T = 50\% \uparrow w_{max}$ e $d = 75\% \uparrow y_{max}$.

Na Tabela 4 se apresentam os resultados obtidos para a cultura da cebola. Pode-se observar que em qualquer cenário e $w_T = 25\% \uparrow y_{max}$, as lâminas e receitas ótimas tem variações insignificantes; como também nas combinações: $w_T = 50\% \uparrow w_{max}$ e $d = 75\% \uparrow y_{max}$; $w_T = 50\% \uparrow w_{max}$ e $d = 50\% \uparrow y_{max}$; $w_T = 75\% \uparrow w_{max}$ e $d = 75\% \uparrow y_{max}$. Por outra parte, não são recomendáveis aumentos de 25% na produção máxima, utilizando 50% ou 75% mais da lâmina máxima como água total disponível para irrigar; ou um aumento de 50% na produção máxima, utilizando 75% mais da lâmina máxima.

Tabela 3: Lâmina ótima w_* (mm) e receita líquida $RL(w_*)$ (R\$ ou US\$) para cada variação no volume total de água disponível (w_T) e demanda prefixada (d) de produção por área irrigada ($kg ha^{-1}$), em função da lâmina e produção máxima com limitações hídricas (w_{max} v_{max}), no caso da banana.

Banana	$d = 25\% \uparrow y_{max}$	$d = 50\% \uparrow y_{max}$	$d = 75\% \uparrow y_{max}$
$W_T = W_{max}$	2812.25	2812.05	2811.99
1 тах	7778.83	7778.83	7778.83
$W_T = 25\% \uparrow W_{max}$	1164.94	1584.04	2812.10
T 20 70 . W max	2423.53	4802.41	7778.83
$W_T = 50\% \uparrow W_{max}$	1010.42	1164.94	1457.94
max	1371.38	2423.53	4159.59
$w_T = 75\% \uparrow w_{max}$	930.85	1028.75	1164.94
1 max	792.82	1501.17	2423.53

Tabela 4: Lâmina ótima w_* (mm) e receita líquida $RL(w_*)$ (R > ou US > 0) para cada variação no volume total de água disponível (w_T) e demanda prefixada (d) de produção por área irrigada ($kg ha^{-1}$), em função da lâmina e produção máxima com limitações hídricas (w_{max}, y_{max}), no caso da cebola.

Cebola	$d = 25\% \uparrow y_{max}$	$d = 50\% \uparrow y_{max}$	$d = 75\% \uparrow y_{max}$
$W_T = W_{max}$	821.11	821.08	821.07
1 max	6283.72	6283.72	6283.72
$W_T = 25\% \uparrow W_{max}$	826.22	821.12	821.09
··· I — C · · · · · max	6282.49	6283.72	6283.72
$W_T = 50\% \uparrow W_{max}$	928.06	826.22	821.14
1 max	5757.13	6282.49	6283.72
$W_T = 75\% \uparrow W_{max}$	984.44	915.64	826.22
ı max	5056.15	5872.28	6282.49

A Tabela 5 mostra os resultados obtidos para a cultura do tomate. Com esta cultura pode se observar que só é recomendável permitir aumentos na produção máxima de 50% e 75%, quando $w_T = w_{max}$ ou quando $w_T = 25\%$ w_{max} e w_{max} e w_{max} ou quando $w_T = 25\%$ w_{max} e w_{max}

Os resultados para a melancia são mostrados na Tabela 6. Novamente para $d=25\%\uparrow y_{max}$, não são recomendáveis os casos $w_T=50\%\uparrow w_{max}$ e $w_T=75\%\uparrow w_{max}$; como também, quando $d=50\%\uparrow y_{max}$ e $w_T=75\%\uparrow w_{max}$. Observe que para o cenário $d=75\%\uparrow y_{max}$, a melhor consideração é alcançada quando $w_T=w_{max}$.

Tabela 5: Lâmina ótima w_* (mm) e receita líquida $RL(w_*)$ (R\$ ou U\$\$) para cada variação no volume total de água disponível (w_T) e demanda prefixada (d) de produção por área irrigada ($kg ha^{-1}$), em função da lâmina e produção máxima com limitações hídricas (w_{max}), no caso do tomate.

Tomate	$d = 25\% \uparrow y_{max}$	$d = 50\% \uparrow y_{max}$	$d = 75\% \uparrow y_{max}$
$W_T = W_{max}$	244.42	560.55	560.52
1 тах	618.95	2531.94	2531.94
$W_T = 25\% \uparrow W_{max}$	169.08	219.23	560.58
max	-402.03	301.85	2531.94
$W_T = 50\% \uparrow W_{max}$	146.06	169.08	207.29
W T Sove W max	-757.30	-402.03	142.94
$W_T = 75\% \uparrow W_{max}$	133.92	148.84	169.08
·· I ·· - / ·· · · · max	-952.97	-713.32	-402.03

Tabela 6: Lâmina ótima w_* (mm) e receita líquida $RL(w_*)$ (R\$ ou U\$\$) para cada variação no volume total de água disponível (w_T) e demanda prefixada (d) de produção por área irrigada ($kg ha^{-1}$), em função da lâmina e produção máxima com limitações hídricas (w_{max} y_{max}), no caso da melancia.

Melancia	$d = 25\% \uparrow y_{max}$	$d = 50\% \uparrow y_{max}$	$d = 75\% \uparrow y_{max}$
$W_T = W_{max}$	849.59	849.18	849.06
r = r max	1699.21	1699.21	1699.21
$W_T = 25\% \uparrow W_{max}$	890.49	849.82	849.28
$W_T = 25 \% + W_{max}$	1692.82	1699.21	1699.21
$W_T = 50\% \uparrow W_{max}$	1034.39	890.49	850.07
$W_T = 30\% \text{ if } W_{max}$	1573.13	1692.82	1699.21
$w_T = 75\% \uparrow w_{max}$	1137.42	1013.71	890.49
$W_T = 75\% + W_{max}$	1394.43	1599.65	1692.82

No caso da cultura do melão (Tabela7), é possível observar que para $w_T = 25\% \uparrow w_{max}$ e em qualquer cenário, as receitas líquidas máximas são as mesmas (R\$ 3519.31). Note que a combinação, $w_T = 75\% \uparrow w_{max}$ e $d = 25\% \uparrow y_{max}$, onde a lâmina é 929.20 mm e a receita, R\$ 2789.08, não é nada recomendável.

Tabela 7: Lâmina ótima w_* (mm) e receita líquida $RL(w_*)$ ($R \le ou$ US\$) para cada variação no volume total de água disponível (w_T) e demanda prefixada (d) de produção por área irrigada ($kg ha^{-1}$), em função da lâmina e produção máxima com limitações hídricas (w_{max} y_{max}), no caso do melão.

Melão	$d = 25\% \uparrow y_{max}$	$d = 50\% \uparrow y_{max}$	$d = 75\% \uparrow y_{max}$
$w_T = w_{max}$	709.96	709.86	709.83
	3519.31	3519.31	3519.31
$W_T = 25\% \uparrow W_{max}$	718.07	710.01	709.89
$WT = 23 \%$ W_{max}	3518.26	3519.31	3519.31
$W_T = 50\% \uparrow W_{max}$	837.35	718.07	710.06
$W_T = 30 / 6 + W_{max}$	3272.37	3518.26	3519.31
$W_T = 75\% \uparrow W_{max}$	929.20	819.38	718.07
$W_T - 7570 + W_{max}$	2789.08	3337.02	3518.26
1	2789.08	3337.02	

Para o milho (Tabela 8), no cenário d=25% † y_{max} , é suficiente escolher $w_T=w_{max}$, onde se tem uma lâmina ótima de 386.992 mm e uma receita líquida máxima de R\$ 1054.047. Já para os cenários d=50% † y_{max} e d=75% † y_{max} , o recomendável é fixar $w_T=25\%$ † w_{max} . Finalmente é bom ressaltar que no ensaio numérico realizado, em que $w_T=w_{max}$; salvo a cultura do tomate e para d=25% † y_{max} , as lâminas e receitas líquidas ótimas, independem dos cenários escolhidos. A melhor situação para todas as culturas é quando se tem um 25% a mais da lâmina máxima de água como total de água disponível, e 25% a mais da produção máxima como produção por área irrigada.

Tabela 8: Lâmina ótima w_* (mm) e receita líquida $RL(w_*)$ (RSou USS) para cada variação no volume total de água disponível (w_T) e demanda prefixada (d) de produção por área irrigada ($kg ha^{-1}$), em função da lâmina e produção máxima com limitações hídricas (W_{max}, V_{max}), no caso do milho.

Milho	$d = 25\% \uparrow y_{max}$	$d = 50\% \uparrow y_{max}$	$d = 75\% \uparrow y_{max}$
	386.992	386.884	386.849
$W_T = W_{max}$	1054.047	1054.048	1054.048
$W_T = 25\% \uparrow W_{max}$	186.735	387.047	386.911
1 mux	70.530	1054.046	1054.047
$W_T = 50\% \uparrow W_{max}$	448.153	186.735	242.418
1 mux	961.270	70.530	541.958
$W_T = 75\% \uparrow W_{max}$	150.320	440.537	186.735
1 max	-320.233	982.850	70.530

CONCLUSÕES: Pode-se concluir que o procedimento desenvolvido apresenta um bom comportamento numérico para os cenários escolhidos, ao comparar os resultados obtidos com os apresentados em FRIZZONE et al. (2005), MONTEIRO et al. (2007) e HEINEMANN et al. (2001); mas serão necessárias mais experiências numéricas que permitam garantir a confiabilidade plena do modelo e procedimento computacional apresentado.

REFERÊNCIAS

CARVALHO FONSECA D., SANCHEZ DELGADO A. R., OLIVEIRA FERREIRA ROSANE, DA SILVA ARAÚJO W., DO FORTE LEAL V.; Maximização da produção e da receita agrícola com limitações de água e nitrogênio utilizando método de pontos interiores. Engenharia Agrícola Jaboticabal, v.29, n.2, p.321-327, 2009.

HEINEMANN, A. B.; SOUSA, S. A. V.; FRIZZONE, J. A.. Determinação da lâmina ótima de água para cultura do milho doce na região de Sete Lagoas – MG. Revista Engenharia Agrícola e Ambiental; v.5, n.1, p. 147-151, 2001.

FRIZZONE, J. A.; ANDRADE JÚNIOR, A. S.; ZOCOLER, J. L.. Planejamento da Irrigação. Análise de Decisão de Investimentos. 1 ed. Embrapa Informação Tecnológica, 627 p.; 2005.

MONTEIRO, R. O. C.; NONATO TÁVORA R.; LEÃO SARAIVA C.; de AGUIAR VANGLÉSIO J. Aspectos econômicos da produção de melão submetido a diferentes lâminas de irrigação e doses de nitrogênio. Revista Irriga Botucatu, v.12, n.3, p.364-376, 2007.